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Abstract. We numerically analyze the distribution of scattering resonance widths in one- and quasi-one
dimensional tight binding models, in the localized regime. We detect and discuss an algebraic decay of the
distribution, similar, though not identical, to recent theoretical predictions.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms — 72.15.Rn Localization effects

(Anderson or weak localization) — 47.52.4j Chaos

1 Introduction

The decay in time of the survival probability inside open
quantum systems is a nontrivial issue, both in Mesoscopic
Physics and in Quantum Chaology. Such decay is deter-
mined by the distribution of resonance widths, which has
been studied extensively [1].

Still, the effect of localization on the statistics of scat-
tering resonances is not completely understood. In the
strongly localized regime, some arguments [2] predict an
asymptotic ¢! law for the probability decay and a I'~!
behaviour for the distribution of resonance widths I'; more
recently, an analytical theory was developed [6], which
slightly corrects the latter into an average decay I"~1:2°.

In this paper we numerically address this question by
investigating the I" distribution in a class of quasi-one di-
mensional models. Hamiltonians in this class are given by
Band Random Matrices. As such matrices provide mod-
els for quantum localization not only in disordered solids
but in chaotic Hamiltonian systems, too [3], our present
results are also relevant to the latter class of problems [7].

We use a computational scheme based on the Effective
Hamiltonian (EH) approach: however, at variance with
the usual way of implementing EHs, which neglects their
energy dependence, we perform an exact (within the lim-
its of numerical accuracy) computation of the distribu-
tion. Our method is described in Section 2. In this way
we indeed detect a large interval of I" in which P(I") de-
cays like I'™® with « in the range 1-2, depending on the
model, and on the localization ratio. Our results therefore
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signal algebraic decay, still somewhat different from the
predictions of reference [6]. Some other differences appear,
in the large-I" part of the distribution.

However, comparing numerical results with theoretical
predictions is by no means an obvious task. First, the the-
ory of reference [6] is one for a continuous model, while our
models are discrete. Second, that theory somehow assumes
a certain ideal coupling to continuum, different from ours.
Finally, the large-size asymptotic regime in this problem
has some nontrivial features, which impose caution in an-
alyzing finite-sample data.

In Section 3 we discuss some general features of the
problem, based on general facts about Anderson local-
ization, and on elementary mathematical estimates which
we derive for our class of discrete models, and which are
well confirmed by our data. Our numerical results are de-
scribed and discussed in the conclusive Section 4.

2 Models and effective Hamiltonians

We consider one-dimensional lattice Hamiltonians, which
describe a wire coupled to one or two perfect leads, in the
form:

H=H® 4 g 4 gto), (1)

The first two terms describe the wire and the leads, re-
spectively; the third term describes the coupling between
them. We label lattice sites by an integer j, in such a way
that the wire is described by 1 < 5 < N. The Hamiltonian
in the leads describes hopping between sites spaced by a
fixed integer b; in the basis of vectors |j), it has nonzero
matrix elements only between sites 4,j which belong
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in the same lead, that is, they are both larger than NV
or smaller than 1. In that case,

HY = 6; i+ 8. (2)

The wire Hamiltonian is a finite, N x N matrix with
nonzero elements only between sites within the wire. Fi-
nally, the operator H (%) couples sites 4, j spaced by b, one
lying in the wire and the other in a lead. The correspond-
ing matrix elements again have the form (2).

We have considered two special cases, namely:

(i) b=1, H® a tridiagonal matrix with unit off-diagonal
elements and diagonal elements given by independent
random variables uniformly distributed in the inter-
val [-W/2,4+W/2]. This is a finite sample of a one-
dimensional Anderson model coupled to leads on both
sides. In the discussion below we shall also make ref-
erence to the one-sided Anderson model, in which the
Hamiltonian matrix is a semi-infinite rather than a
doubly infinite one. This is equivalent to inserting a
perfectly reflecting boundary at n = N + 1;

N > b > 1, the wire Hamiltonian is a Band Random
Matrix (BRM), that is, a real symmetric matrix of

rank N such that H;; # 0 < |i — j| < b. H(’]) are

17
independent Gaussian variables, with variance 32/2
for off-diagonal elements and 32 for diagonal ones.
We have chosen § = 1. As analyzed in [4], this cor-
responds to the “matching wire” regime discussed by
Ekonomou and Soukolis [5].

In both cases (i), (ii) the Schroedinger equation for free

propagation in the leads has solutions u,, = \/LQ—Weikm, with

dispersion law E' = 2 cos kb. For any energy value F in the
interval [—2, 2] there are b different allowed momenta,

E
arccos = 2
2 4 (3)

ke =
b b

with s =0...b— 1. There are b incoming and b outgoing
waves, hence the wire enforces multichannel scattering.
It is important to remark that with the choice (2) the
velocity v; = S—IZ |p=F is the same in all channels®.

The S-matrix relates amplitudes of incoming and out-
going plane waves, I1, g and Or, g respectively (L and R
stand for left and right):

I @)
s(H)=(").
Ir Or
In our representation, the S-matrix is a 2b x 2b energy-
dependent matrix Ss ;(E), where [, s are channel indexes.

We compute the scattering matrix from the Lippman-
Schwinger equation for the scattering states

ut -~ GEVut =u (4)

! In reference [4] it was noted that the statistics of con-
ductance fluctuations is not significantly different with other
choices of the dispersion law.
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where u are the free eigenfunctions, u® the scattering
states and V is the “potential”’: a matrix of rank N de-
fined wia the formula H — Hy = V. G is the free Green
function G = (E +ie — Hp)~'. It can be computed by a
complex integral:

(GT)nm = (n|(E — Hotie) "' |m)| _,
1 27 ei(m—n)k
FE4ie — 2coskb

27 Jo

€=

The scattering matrix is given by:

. [ dk; dk;
SLJ = (SLJ — 2mi dH d—é <UL |V| u;t> (6)
H=F H=FE

. dk;
where i, j are channel labels, and |/ 7

is the density
H=FE

of states in channel 3.
Now, G° can be written in block form as

o .0 0
911 912 Y13
0o .0 0
921 922 923
0o .0 0
931 932 Y33

In this section we use small letters for blocks (i.e., sub-
matrices) and capital letters for full operators. Here g¥;,
9%, 99, and g?5 are semi-infinite matrices, g9, is a N x N
matrix, g0 and g9, are matrices with N columns and in-
finitely many rows, ¢9; and g9; have N rows and infinitely
many columns. As the potential matrix is localized within
the center block (2,2), we write it in the block form

000
0v 0
000

The poles of the S-matrix are the complex values of energy
for which the N x N matrix (I — g95v) has no inverse;
hence, they are given by the roots of

det (I - 982iv) =0. (7)

In order to solve this equation we introduce an ‘effective
Hamiltonian’ matrix Heg of rank N. This is a well known
construction [8-10], but the exact form of the effective
Hamiltonian for our specific models is not immediately
derived from the general theory. There are in fact certain
slight differences between our effective Hamiltonian and
the one used in [6], which are probably due to a differ-
ent choice of the Hamiltonian in the leads. Therefore we
shall presently give a complete derivation for our specific
models.
We start with the identity

Go=G—GoVG = (1—GoV)G (8)

where G = (E +ie — H)™!|.=¢. Multiplying on the left by
Ggl and on the right by G~!, we have

G l=Gyt -V
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The block form of (8) is

911 912 9% 1 —g%v 0] [911 912 913
991 9% 953 = [0 (L—g8v) O |g21 g22 go3
931 9% 9% 0 —g%v 1] lgs1 932 g33

where 1 and 0 are identity and zero matrices of dimensions
corresponding to their position in the infinite matrix.

For the center block we have g3y = (1 — g95v)ga2,
whence, multiplying on the left by 932_1 and on the right
by 9521, we obtain

93 = (9% — ). 9)

In order to compute (g95) ! we start from the definition,
which in block forms reads

gh 9ta 95| [E—hY  uis 0 100

991 9% 9% ust  E—hfy  us =010

oo o) L 0w E-hil 001
where u;; = —hgj are the coupling matrices.

The equation for the center block is
gohur2 + 995 (B — h3y) + g3zuzs = 1. (10)

From (5) we know that the free Green function is a
Toeplitz matrix, whose center block g9, can be written:

Zo X1 ... TN-1
1
. T1
IN—-1 ... 1 i)

where x5 = 0 if s is not a multiple of b, while, if s = Ib,
then zy, = zoe'®, with k = arccos (F/2). Keeping this in
mind we get

(981“12 + 983”32) =

Tp ... T 0...0:L'N+1...£L'N+b
. _ 0
: M Do =g Kp
$N+b...IL’N+10...0 rr ... Tp
where K;, = diag(e*®,... e** 0,...,0,e* ... e*?) is

the “self-energy”.
Then from (10) we obtain:

(9(2)2)71 =(F- hgz - Kp).
Finally, (9) yields:

(922) " = (99) —v=(E—h3, — K, —v)
= (E' — hag — Kb(E)) = (E - Heff(E))

-1

where Hog(E) = hoa + Kp(E) is the effective Hamiltonian
matrix of rank N. The role of the effective Hamiltonian
emerges on noting that:

I-— 982” = 932((932)_1 - U) = 932 (E - Heff(E))
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which shows that solving equation (7) is the same as solv-
ing the equation:

(11)

For further use we rewrite He.g in operator notation. In
place of hgs we rewrite H®: the Hamiltonian operator
of the sample, with Dirichlet conditions at n = 0 and
n =N + 1. Then

det (Heff(E) - E) ~0.

b N
a9 =50+ 52 3 A
n=1 n=N-—b+1

The leads only affect diagonal elements, at sites near the
contact points. For the Anderson model, where hopping
only occurs between neighbouring sites, only the first and
the last diagonal elements of the Hamiltonian are affected.
Some straightforward modifications to the above construc-
tion are necessary in the one-sided Anderson case; we omit
details here.

Solving the nonlinear equation (11) is a difficult task.
When using the effective Hamiltonian formalism, one typ-
ically neglects the dependence of Heg on energy, so the
problem is reduced to finding eigenvalues of the effective
Hamiltonian at a chosen fixed value Fy of the energy. Such
eigenvalues depend on Ej as a parameter; for convenience
of language, we will term them parametric resonances in
the following, reserving the name exact resonances to so-
lutions of equation (11).

3 Theoretical premises

A few remarks are in order, about the mathematical prob-
lem set by the above formalism. These are most simply
formulated for the one-sided Anderson case, so we restrict
to that case; nevertheless, similar arguments can be devel-
oped for the two-sided Anderson and for the band matrix
models.
If F is a root of equation (11), then there is a vector
|t) of unit norm, satisfying the equation:
HO|p) +*P1) (1)) = Ely) (13)
where H® is now the Anderson Hamiltonian with Dirich-
let boundary conditions at n = 0, n = N 4+ 1. Multiplying
equation (13) on the left by 1, and taking imaginary parts,
we get:
Im(e*PN[(1|g))> = I (14)
where we have set £ = x + il" with real =, I".
From the dispersion law the following analytical ex-
pression of e*(E) follows:

olk(E) — E+vE?-4 . (15)
2

In the physical sheet, the square root in equation (15)
has to be chosen such that its imaginary part is opposite
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in sign to I' = Zm(E); then an easy computation shows
that Zm(e*(®)) is opposite in sign to I', so equation (14)
cannot have solutions with I" # 0. In order to solve it, we
have to continue Heg into the nonphysical sheet, across
the branch cut [-2,+2].

We now address the problem of finding estimates for
the largest I'. We consider parametric resonances first:
if Ey is chosen in (—2,2), then equation (14) immedi-
ately sets a sharp, realization-independent bound on para-
metric I

7] < [sin (k(Bw))| = YA 20 <y

2

For exact resonances we can only establish a milder,
realization-dependent bound. Multiplying equation (13)
on the left by (1|, using equation (13), and the explicit
form of H®, we get:

(@) = (1) (B =@ —v (1)

where V(1) is the random on-site potential at site 1. Since
[(2|19) 2 + [(1|¥)]? < 1, using equation (13) we get the
inequality:

(16)

(17)

I 1
- < -
Im(etk(E)) = 14 |E — elk(E) — V(1)|2

(18)

which, given a realization of the random potential, sets
an upper bound to I'. At the center of the spectrum
and small V(1) this bound has approximately the form
| < [V(1)|7!. In turn, this implies that those realiza-
tions of the random potential which yield I"’s larger than
a given 7 have a probability not larger than ~ 1/+. This
bound on the large-I" behaviour of the P(I") distribution
of exact resonances is much milder than the bound (16) for
parametric resonances. We anticipate that this difference
is manifest in numerical data (see Figs. 4, 5, 6)

In the limit N = oo, both H®) and H.g(F,) become
operators in oo— dimensional Hilbert space. The latter
operator is obtained by adding a rank-one perturbation to
the former, which in turn has a dense point spectrum in
the interval I = [-W/2—2, +W/242] (with probability 1).
From general operator theory it follows, that in the limit
N = oo the distribution of parametric I"’s collapses into
a Dirac delta at zero — unlike other scattering statistics,
(e.g., the phase shift distribution), which have a smooth
limit distribution. This physically intuitive result should
be valid for the distribution of exact resonances, too.

Thus, on increasing N, we should expect the leftmost
part of the finite-V distribution P(I") to rise, and the rest
to gradually subside. To further illustrate this point, we
reformulate equation (13) by projecting it onto the basis
of eigenvectors u,, of H". Denoting E,, the corresponding
eigenvalues and 1, the amplitudes of ¢, we get:

_ 7eik(E)<un|1><1|w>
" E,-FE

whence:

_ ik(E) |<Un|1>|2.
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As (1]yp) = 0 is excluded, the resonant values of E must
solve the key equation:

Z Dn_ _ _eik(E)
E,—FE
n

2.

(19)

where p, = [(1|uy,)

At large N, the eigenfunctions wu, are exponentially
localized, with localization lengths £(E,,). For resonances
E =z +iI’ with |I'| < 1/N, a single-pole approximation
to the lhs of equation (19) should be valid, because eigen-
functions with E,’s much closer than the average level
spacing typically have an exponentially small overlap; so
the sum in (19) is dominated by a single term [11]. Hence,
the narrowest resonances can be assumed to solve

e E) ~ (E-E,)
with p,, small, so

E ~ E, + pp,e*Fr)  and I' ~ p,sin (k(En)) (20)
If we further restrict near the center of the spectrum,
then the smallest I" come from states u,, localized around
sites ng(n) lying in the rightmost part of the sample. For
these, log(pn) = —2n¢(n)/& + N, with £ the localization
length at the band center and 7, a fluctuating quantity of
order /n,.

Thus the distribution of very small I'’s is ruled by the
distribution of p,’s. If in addition I <« exp(—2N/§), the
latter distribution is mainly determined by fluctuations of
Nn; assuming a Gaussian distribution for the latter, one
gets that in this region P(I") has the lognormal distribu-
tion already well known in this context. Nevertheless, this
part becomes negligible at large N, because it comes of a
fraction ~ /N of the full set of all resonances.

Away from this extreme region, the I" statistics is more
and more affected by the change in ng. Neglecting 7,, com-
pletely, one deduces a dependence ~ 1/I", by a simple ar-
gument already reproduced in reference [6]. The presence
of 9, just smoothens the cusp of 1/I" at I' = exp(—2N/¢),
but the 1/I" law again re-emerges at larger I

So finite- N, normalized distributions P(I") have a peak
at ~ exp(—2N/¢€), of height ~ exp(2N/€). It is this very
peak which eventually builds the limit d— distribution.
In the range exp(—2N/¢) < I' < 1/N, the above rough
argument suggests a law ~ 1/I"; but it must be mentioned
that according to Titov and Fyodorov [6] this inverse law
should be restricted to a smaller range. Some numerical
data about this issue will be given in the next section.

The large I region is essentially determined by the
coupling to continuum, so it should be model-dependent.
Nevertheless, it is reasonable to assume that the number
of resonances involved is constant, of order &; if so, again
this tail should subside at large N, at the rate ~ £/N.

Finally we use equation (19) to investigate the relia-
bility of parametric resonances as approximations of exact
ones. The equation for parametric resonances is obtained
from equation (19) by replacing in the rhs E by a fixed
Ey chosen in (—2,+2). An obvious requirement for para-
metric resonances to approximate exact ones is that their
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Fig. 1. Distribution of exact resonance widths for BRM models
with different localization ratios. Diamonds: N = 100, band-
width 5, the slope of the dashed line is —1.6. Squares: N = 150,
bandwidth 26, the slope of the solid line is —2.1. Crosses:
N = 200, bandwidth 20, slope —1.85.

dependence on Ey be mild. Now,

nl
i

If a given parametric resonance is to vary little on chang-
ing Ey on the order of its width I, it is therefore necessary
that:

IQ
e

—1
dk(Eo)
dEy

dEO

I'? < \/4—E?
which shows that the parametric approximation becomes
unreliable close to the edges £2, and in any case at I" ~ 1.

4 Numerical method and results

As we are only interested in the statistical distribution of
the imaginary parts of solutions of (11), we don’t need to
compute them exactly. Instead, we use the fact that the
number of zeros of an analytic function f(z) inside a closed
path is equal to the variation of the phase of the function
itself along the path divided by 2mw. We have therefore
considered rectangular regions {E : |Re(F)| < Ep,—v <
Im(FE) < 0} in the lower part of the 2nd Riemann sheet.
By numerically computing the phase of det(H.g—F) along
the boundaries of such regions we obtained N (v, Ep), the
number of resonances having real parts in (—Ey, +Ep),
and widths not larger than ~. Typically Ey = 0.5 in our
computations.

Repeating the procedure for different realizations of
our random Hamiltonians, we obtained the histograms of
resonance widths shown in Figures 1-6 (there P(I") is the
probability density for I" values). The numerical procedure
is quite heavy, so we were able to process at most 400
realizations of the BRM model. With the Anderson model,

307
4.0
A OBp0obo a
20 - o 1
e}
& 3
. & xe,
o ®
00 L =3 ]
c
o
>
o
-2.0 - B
-4.0 + g —
6.0 ‘ ‘ ‘
-6.0 -4.0 -2.0 0.0 2.0

log(l")

Fig. 2. Distribution of exact resonance widths for BRM mod-
els with similar localization ratios. Diamonds: N = 150, band-
width 10. Squares: N = 200, bandwidth 12. Circles: N = 200,
bandwidth 7. Triangles: N = 150, bandwidth 6. Their local-
ization ratios 62/N are 0.67,0.72,0.245, 0.24, respectively.
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Pee)

log(P())
o
o
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-4.0 I . .
-6.0 -4.0 -2.0 0.0 2.0

log()

Fig. 3. Distribution of exact resonance widths for the two-
leads Anderson model, with different localization ratios. Di-
amonds: N = 150, W = 1.1. Circless N = 100, W = 1.5.
Crosses: N = 100, W = 0.3. The slope of the line is —1.75.

computation is faster, so we could process up to 1000
realizations.

Most of the distributions of resonance widths P(I")
computed by the above discussed method decay, at very
large I', faster than power-like, also because of the diffi-
culty of numerically building good statistics in this poorly
populated region.

However, in an intermediate region of values of I", the
observed decay is algebraic, proportional to I'"®. The
width of this region depends on the localization ratio r,
which is proportional to b?/N and to 1/(NW?) for the
BRM model and for the Anderson model respectively. The
region of algebraic decay is very broad in strong localized
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Fig. 4. Distribution of parametric and exact resonance widths
for the Anderson model. Diamonds: exact resonances at N =
100, W = 2.5, one lead. Squares: exact resonances at N = 100,
W = 1.5, two leads. The dashed and the solid lines represent
parametric resonances obtained by diagonalizing Heg(0), for
1- and 2-leads model, respectively.
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Log(l)

Fig. 5. Distribution of parametric and exact resonance widths
for the one-lead Anderson model. Squares: parametric reso-
nances at N = 300, W = 2. The slope of the main straight line
is —1, that of the shorter one on the right is —2. Diamonds
are reproduced from Figure 4, which refers to a less localized
situation.

systems, r < 1; it shrinks as r is increased, and eventually
disappears in the metallic region r > 1.

The behaviour of the exponent « is somewhat differ-
ent in the BRM and in the Anderson model. In the for-
mer case, « increases as r increases, going from values
about 1.5-1.6 to values about 2-2.1 (see Fig. 1). Data ob-
tained at fixed r and different values of N, b (with % > 5,
though) show that « only depends on the localization ra-
tio in the explored parameter range: see Figure 2, which

The European Physical Journal B

40
O

20 o QL 1
E
£ oo i
oD
8

-20 t

40 ‘ ‘ ‘ ‘ ‘ ‘

=60  -50  -40  -30 20  -10 0.0 10

log(l")

Fig. 6. Distribution of parametric and exact resonance widths
for the BRM model. Diamonds: N = 100, bandwidth 15. Cir-
cles: N = 100, bandwidth 5. Triangles, N = 150, bandwidth
10. The curves represent parametric resonances obtained by
diagonalizing Heg(0).

shows distributions with approximately the same localiza-
tion ratios and different IV, b.

We have numerically computed distributions of widths
for the one and two-leads Anderson model, too, by solv-
ing equation (11) as explained above. In this case, « re-
mains more or less constant around 1.7-1.8: it doesn’t
seem to depend on the localization ratio (Fig. 3) in the
explored parameter range. The only effect of decreasing
W is the predicted shift of the peak of the distribution
towards larger values I'.

Most of our data do not yet pertain to the true asymp-
totic large- NV regime. In fact, the peak in the left-hand part
of our data is still relatively broad in comparison to the
right-hand part, so the asymptotically interesting region
e 2N/& « I < 1 is still somewhat restricted. Neverthe-
less the region of algebraic decay is already clean, and rela-
tively stable against variation of the localization ratio. We
therefore surmise, that in more localized regimes the local
exponent a would be found to smoothly decrease with I,
tending to 1 as the peak of the distribution is approached
from the right. As we shall presently discuss, we get indi-
cations in this sense from distributions of parametric I"’s,
whose computation could be pushed to significantly more
localized situations than accessible to exact computations,
based on solving equation (11).

Parametric distributions were obtained by diagonaliz-
ing Heg(0). Both for the BRM and the Anderson model,
they exhibit a cut-off at I" ~ 1 which is absent in the real
distributions. The latter in fact decays to zero much more
gently. In other words: in all the models we have stud-
ied, neglecting the energy dependence of effective Hamil-
tonians yields acceptable results only at resonance widths
appreciably smaller than 1 (Figs. 4, 5, 6). The reason
is that, at such large widths, the effective Hamiltonian
is significantly changing already over the width of single
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resonances. These numerical findings are fully consistent
with the analysis in Section 3.

Exact and parametric distributions fairly well agree
in the central part, on the right of the peak, but they
are again somewhat different on the left. The reason is
probably that our exact distributions collect resonances
from a relatively broad interval of real energies, so they
include resonances closer to the edges, where smaller I’s
are a priori expected (Eq. (20)).

The sharp cut-off of numerical distributions of para-
metric resonances was also observed in reference [6], and
found to be consistent with the therein developed theory
for exact resonances in a continuous, white-noise model
[12]. That coincidence between exact and parametric dis-
tributions at relatively large I" raises an interesting theo-
retical problem about the role of the coupling.

In Figure 4 we compare parametric and exact distribu-
tions both for the one- and the two-sided Anderson model.
Note that one-lead data refer to a significantly more lo-
calized regime than two-lead ones, and yield smaller a’s.
The estimated « for one-sided Anderson is in this case
~ 1.1. In Figure 5 we have again computed the paramet-
ric distribution for one-sided Anderson, this time in an
even more localized situation. Moving from left to right,
the lhs part of the distribution now exhibits a &~ 1 over
three decades, after which the distribution gradually drops
to zero in roughly two decades.

We finally note that the rightmost part of the exact
distribution in Figure 5 is well fitted by a I'=2 law. As
the latter coincides with the upper bound established in
Section 3 for exact resonances, we have an indication that
that bound is probably optimal.

In summary: in this paper we have analyzed the
distributions of imaginary parts of resonances in dif-
ferent tight-binding models. The most interesting
result is the presence of a region with power like
decay, both for Anderson and BRM model. It was
obtained by numerically implementing the effective
Hamiltonian method, in a way which doesn’t a priori
neglect energy dependence. Our analysis indicates that
most of the distribution of widths tends to concen-
trate within a single peak around I ~ exp(—2N/¢) as
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more and more localized regimes are approached. While
subsiding (with increasing N), the distribution of widths
on the right of the peak displays an algebraic dependence
on I'. The related exponent ranges from 1 (at small I'), to
2 (at large I"). In the latter region, however, the specific
form of the coupling to continuum plays a role.

Useful discussions with G. Maspero are acknowledged. We are
grateful to Y. Fyodorov and M. Titov for communicating us
unpublished details of their work.
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